

Technical Overview of Digital Video Files

17-V-001-1.3

Disclaimer Regarding Use of SWGDE Documents

SWGDE documents are developed by a consensus process that involves the best efforts of relevant subject matter experts, organizations, and input from other stakeholders to publish standards, requirements, best practices, guidelines, technical notes, positions, and considerations in the discipline of digital and multimedia forensics and related fields. No warranty or other representation as to SWGDE work product is made or intended.

SWGDE requests notification by email before or contemporaneous to the introduction of this document, or any portion thereof, as a marked exhibit offered for or moved into evidence in such proceeding. The notification should include: 1) The formal name of the proceeding, including docket number or similar identifier; 2) the name and location of the body conducting the hearing or proceeding; and 3) the name, mailing address (if available) and contact information of the party offering or moving the document into evidence. Subsequent to the use of this document in the proceeding please notify SWGDE as to the outcome of the matter. Notifications should be submitted via the SWGDE Notice of Use/Redistribution Form or sent to secretary@swgde.org.

From time to time, SWGDE documents may be revised, updated, deprecated, or sunsetted. Readers are advised to verify on the SWGDE website (https://www.swgde.org) they are utilizing the current version of this document. Prior versions of SWGDE documents are archived and available on the SWGDE website.

Redistribution Policy

SWGDE grants permission for redistribution and use of all publicly posted documents created by SWGDE, provided that the following conditions are met:

- 1. Redistribution of documents or parts of documents must retain this SWGDE cover page containing the Disclaimer Regarding Use.
- 2. Neither the name of SWGDE nor the names of contributors may be used to endorse or promote products derived from its documents.
- 3. Any reference or quote from a SWGDE document must include the version number (or creation date) of the document and also indicate if the document is in a draft status.

Requests for Modification

SWGDE encourages stakeholder participation in the preparation of documents. Suggestions for modifications are welcome and must be submitted via the SWGDE Request for Modification
Form or forwarded to the Secretary in writing at secretary@swgde.org. The following information is required as a part of any suggested modification:

- a) Submitter's name
- b) Affiliation (agency/organization)
- c) Address

- d) Telephone number and email address
- e) SWGDE Document title and version number
- f) Change from (note document section number)
- g) Change to (provide suggested text where appropriate; comments not including suggested text will not be considered)
- h) Basis for suggested modification

Intellectual Property

All images, tables, and figures in SWGDE documents are developed and owned by SWGDE, unless otherwise credited.

Unauthorized use of the SWGDE logo or document content, including images, tables, and figures, without written permission from SWGDE is a violation of our intellectual property rights.

Individuals may not misstate and/or over represent duties and responsibilities of SWGDE work. This includes claiming oneself as a contributing member without actively participating in SWGDE meetings; claiming oneself as an officer of SWGDE without serving as such; claiming sole authorship of a document; use the SWGDE logo on any material and/or curriculum vitae.

Any mention of specific products within SWGDE documents is for informational purposes only; it does not imply a recommendation or endorsement by SWGDE.

Technical Overview of Digital Video Files

Table of Contents

1.	Intr	oduction	2		
-	1.1	General Concepts	2		
		itainer			
	2.1	Examples of Common Multimedia Containers			
,	2.2	Notes on Atypical Data Streams and Containers			
3.	Cod	lec	4		
4.		me Rate			
5.		olution			
6.		npression			
		Lossless Compression			
		Lossy Compression			
7.	Con	nclusion	.13		
8.	Add	litional Resources	.13		
9.	References14				
10.		listory			

1. Introduction

This document describes file formats, encoding standards, and compression algorithms used in digital video. It does not cover still image compression algorithms or file formats¹. Understanding these elements, including the advantages and disadvantages of the options within each element, allows organizations to make informed decisions about the handling of digital video evidence.

1.1 General Concepts

There are several important terms and concepts related to a digital video that may seem difficult to understand. As an example, practitioners often conflate video file formats with video encoding, when, in practice, these terms describe distinct elements of digital video. The terms *file format*², *wrapper*, and *container* are used interchangeably and represent the same concept, which is a standardized structural method to store the variety of elements necessary to represent video and audio information. An *encoding format* is an algorithm applied to video or audio samples to store the samples numerically so that they can be reconstructed into visual and audio information at a future date. Some encodings are also used to reduce the size of stored video and/or audio samples for lower impact on storage and/or bandwidth requirements while retaining as much image fidelity as possible.

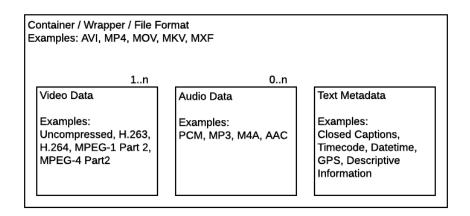


Figure 1. Simplified illustration of the relationship between digital file containers and video, audio, and metadata information stored within.

¹ See SWGDE Digital Image Compression and File Formats Guidelines for detailed information on digital still images. [1]

² See SWGDE Digital and Multimedia Evidence Glossary for a succinct definition of this concept. [2]

The illustration above simplifies the anatomy of digital video, demonstrating that the container is the holder of at least one encoded video stream, zero or more audio streams, and any additional textual information that is included in the file.

The file extension (i.e. .MP4, .DAV, .REM) along with the source recording device brand/model can assist practitioners in determining which video player is needed to play the particular file in the native format (if needed).

2. Container

A multimedia container (referred to in this document as a container) is a digital file format that is used as a wrapper for data files. The specification for a container—for example, the AVI format specification, the ISO Base Media File format (MP4), or even a proprietary container specification—describes how different elements of data co-exist within the file. Some containers are simple, designed for only a single type of audio or video data. Others are much more advanced and can support a variety of audio and video file types, as well as subtitles, chapter information, metadata, and synchronization details necessary for proper playback. When choosing the most appropriate container to use, it is important to consider its compatibility with commonly available media players, as some files require proprietary applications for playback and/or retrieval of all available metadata.

2.1 Examples of Common Multimedia Containers

Name	Description
3GP	Used mostly for mobile phone recordings
ASF	(Advanced Systems Format) Originally used for Microsoft .WMA and .WMV files
AVI	Part of the RIFF family of formats, this is a standard Microsoft Windows container
FLV/F4V	(Flash Video) Developed by Adobe Systems for flash video, also includes SWF extensions
MKV	(Matroska) An open standard container that can hold almost any file format
MJPEG	(Motion JPEG) A container with which each video image is compressed separately as a JPEG image
MOV/ QuickTime	Standard video container from Apple, Inc.
MPEG	Standard container for MPEG-1 and MPEG-2 streams used on DVD-Video discs and some others
MPEG-2/ MPEG- TS	Used for digital broadcasting, and on Blu-ray Disc
MPEG-4/MP4	A standard audio and video container for the MPEG-4 and H.264

Table 1. Selected examples of common video file format³.

There are many other multimedia container formats, and this list should not be considered exhaustive. [3]

2.2 Notes on Atypical Data Streams and Containers

In some applications (e.g., DVRs, proprietary playback systems), the video samples, audio samples, and/or text metadata are stored separately on the file system and are compiled into a sequence. In these cases, the elements are not typically stored in a container format. The proprietary application has an internal code that compiles the elements for playback within the system. In order to extract the video data from these applications, either the system must support an export function that will organize the video samples, audio samples, and/or text metadata into a standard container; the system will export the video samples, audio samples, and/or text metadata into a proprietary container (still requiring the proprietary player to render the video object); or an examiner will need to obtain direct access to the storage media to retrieve a bit-forbit copy of the contents in order to locate, carve, and recompile the video samples, audio samples, and/or text metadata manually⁴.

Analysis of these formats requires special consideration and may reveal:

- Structure of video recorded content in pre-defined data block or objects;
- Embedded checksum system within the recording structure;
- Playback only available on manufacturer's proprietary software;
- A separate recording log file accompanying multimedia files;
- Inclusion of proprietary playback software upon export.

3. Codec⁵

A codec is an algorithm used to encode or decode a stream of digital data or signals according to a specific encoding format. Video codecs use encoding formats to compress data for more efficient transmission or storage of recordings. Decoding extracts digital video data from a previously encoded file, converting it into a displayable, decompressed form for playback or examination.

It is important to be aware of the following considerations concerning video codecs:

³ This table was derived from a list originally located at the Library of Congress. [3]

⁴ See SWGDE Proposed Techniques for Advanced Data Recovery from Security DVRs Containing H.264 Data for more in-depth discussion of this advanced process. [4]

⁵ See [2], "Codec," for succinct definition of this concept.

- There are many different encoding formats, and the amount of compression achieved can vary dramatically between the various encoding formats and even between different versions or implementations of the same codec.
- In general, higher compression can be achieved at the expense of reducing the quality of the decoded video.
- The original and decoded video may be identical. If the output of the decoder is identical to the original video, the compression process is lossless. If the two videos are not identical, the compression process is lossy. It is not possible to recover the original data from lossy compressed video [5]. (See Section 6 below for more information on lossless and lossy compression.)

The following table lists a sampling of common video encoding formats.

Standard	ISO/IEC	Common Uses
H.261	23002-1	Video-conferencing
MPEG-1 Part 2	11172	Video-CD
H.262/MPEG-2 Part 2	13818-2	DVD-Video, Blu-Ray, Digital Video Broadcasting, <u>SVCD</u>
H.263	14496(old)	Videoconferencing, Video Telephony, Video on Mobile Phones (<u>3GP</u>)
MPEG-4 Part 2	14496-2	Video on Internet (<u>DivX</u> , <u>Xvid</u>)
H.264/MPEG-4 AVC	14496-10	Blu-ray, Streaming Video, Digital Video Broadcasting, iPod Video, Apple TV
VC-2 (Dirac)	*SMPTE Std	Video on Internet, HDTV broadcast, UHDTV
MJPEG		(Motion JPEG) A format with which each video image is compressed separately as a JPEG image
H.265 (HEVC)	23008-2	4k streaming services and UHD Video on Demand

Table 2. Selected examples of common video encodings⁶.

_

⁶ This list of common encoding formats was adapted from a list originally located at the Library of Congress. [3]

4. Frame Rate

Frame rate is a measure of the video display rate in frames per second (FPS). The higher the FPS, the smoother the motion appears. Below are the two most common television broadcast FPS standards:

- NTSC (National Television Standards Committee) The NTSC is responsible for setting television and video standards in the United States. The NTSC standard for television defines a video frame rate of 29.97 FPS. The NTSC standard also requires that these frames be interlaced.
- **PAL** (Phase Alternating Line) The dominant television standard in Europe. The PAL standard delivers 25 FPS.

5. Resolution

Resolution is the pixel dimensions of an image or video⁷. It is typically expressed as the number of pixels captured horizontally and vertically. Common video resolutions are 320x240 (Common Intermediate Format located within some CCTV), 640x480 (Standard Definition Video), 1280x720 (720 High Definition [HD] Video), 1920x1080 (1080 HD Video), 1920x1200 (Computer Monitor) and 4096x2196 (4K or UHD Video). These are seen in the image below for a reference.

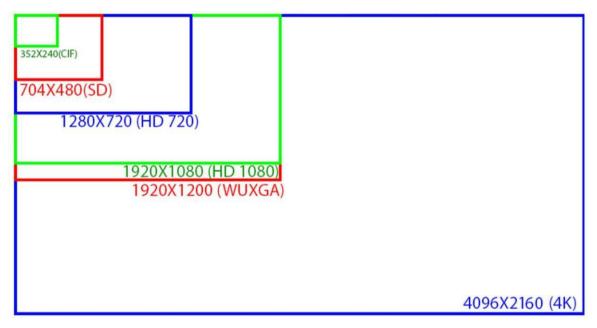


Figure 2. Comparison of common image dimensions used in video data.

⁷ See [2], "Resolution," for further detail on the facets of resolution as an image-related concept.

The more pixels there are in a given image, the higher the resolution, and the more detail that can potentially be captured and examined. In the example below, the same license plate is captured at varying resolutions. Note that at the lower resolutions, the information on the license plate is unreadable in Figure 3.

Figure 3. Illustration of the information lost as pixel resolution decreases.

6. Compression

Compression is the process of reducing the size of a data file, utilizing algorithms to minimize redundancy and rearrange the way information is organized within the file⁸. Compression is often used to facilitate the storage, transfer, and/or streaming of large digital video files. Compression algorithms that retain all the original information are referred to as lossless, while those resulting in a loss of data are lossy.

The SWGDE Digital Image Compression and File Formats Guidelines notes three methods used in standard image compression: run-length encoding (lossless), lexicographic encoding (lossless), and quantization encoding (lossy)⁹. Additionally, moving image compression algorithms employ methods such as Group of Pictures (GOP) or chroma subsampling; both are lossy forms of compression. Other factors, such as bit rate settings, can be used in conjunction with encoding formats to limit quality or file size.

⁹ See [1], Section 2.

Technical Overview of Digital Video Files

⁸ See [1], Section 2.7.

When deciding upon digital video encodings that use compression methods, decision makers should carefully consider cost, workflow, time, storage demands, available bandwidth, network infrastructure, and video quality. Lossy compression can make forensic analysis more difficult, even when, during motion playback, a recording seems to have properly captured events as they occurred. Also, when received files have been compressed, care should be taken not to compress them any further. If additional processing is required, it is preferable to save a copy of the file in an uncompressed format. Work can then continue as needed and can be saved with no compression or using a lossless encoding.

6.1 Lossless Compression

When using lossless compression, no information is lost, but the compressed file uses fewer bits to represent the information. When the file is decompressed, the original pre-compressed data is reconstructed completely. Generally, lossless compression can achieve compression at a ratio of about 2:1 (thus reducing the file size of the original file by half). Selection of a lossless compression option will result in the preservation of all data; however, the resulting file size may be significantly higher than what can be achieved using lossy compression methods. Lempel-Ziv-Welch (LZW) algorithm is an example of lossless compression¹⁰.

6.2 Lossy Compression

To achieve higher compression ratios, lossy compression algorithms reduce redundant or irrelevant data in video files. This compression reduces the storage required to represent the original video. Some video data will be lost during this process, and the original pre-compressed video data will not be able to be reconstructed in its original form.

Additionally, lossy compression algorithms will continue to compress the video data in each subsequent re-encoding of a video file, resulting in additional irretrievable loss of video data. Lossy compression may produce compression artifacts, which are noticeable distortions of images, audio, and video¹¹. These include, but are not limited to, blocking, pixelation, a reduction of high or low audio frequencies, jerky motion, and inaccurate frame timing.

¹⁰ This section borrows language from [1].

¹¹ See [1], Section 2.5, for more detailed coverage of this topic.

Figure 4. Example of the visual distortion that can be the result of high degrees of lossy compression.

6.2.1 Spatial and Temporal Compression

Because video data consists of a sequence of still images reproduced in real time, compression can take place within a single image frame of video as well as across a set of related image frames.

Spatial compression (intraframe compression) refers to compression methods that reduce the data contained within a single video frame by eliminating redundancy within areas of similar color. This compression decreases the file size for each frame of spatially compressed video. The adverse effects of this are that in grouping similar pixel values, high-frequency information or details can be lost, such as in Abraham Lincoln's beard in Figure 4. This effect is further discussed in the section **6.2.3 Macroblocks**.

Temporal compression (interframe compression) reduces the data contained within a single video frame by eliminating redundancy between similar areas in adjacent frames. The adverse effects of this are similar areas can be copied or moved from previous frames, making it possible to miss small changes within an individual frame of video. This topic is further discussed in the section **6.2.4 Group of Pictures (GOP) Structure**.

6.2.2 Bit Rate

The bit rate of a video file is the size of the data stream when the video is being rendered in real time, often expressed in kilobits (Kbps) or megabits per second (Mbps). It represents the quality at which a video is transmitted. Bit rate specifies the minimum capabilities needed to play a video without interruption. With higher bit rates, a particular encoding format can support a larger frame size, higher frame rate, less compression per frame, or some combination of each. With a lower bit rate, one or more of these video signal characteristics will be reduced.

Most tools that can edit or transcode video can also offer the user the ability to set the bit rate for any resultant file. Options include constant bit rate or variable bit rate, which offers the software the flexibility to add more compression based on changes in the image data.

6.2.3 Macroblocks

Each codec has a set way of handling the encoding and decoding of pixel information. Many codecs utilize macroblocking, which takes the information in a defined region and examines each pixel in relation to the other pixels in that region. Depending on the codec, this can be done in 4x4, 8x8, or 16x16 pixel blocks.

More modern codecs, such as H.265, have the ability to utilize dynamic block structures called Coding Tree Units. This allows blocks to change between 4x4 and 64x64 pixel regions to preserve details.

6.2.3.1 Quantization

In a general sense, quantization is the process of reducing the values within a set of data. In lossy video compression, this typically happens by the encoder at the block or macroblock level by looking for similarities in luminance or color and replacing them with the same or similar values. This helps limit the number of unique values that are encoded (i.e., compressed) resulting in a reduction in the size of the video file. The amount of quantization is often determined by the encoder based on the amount of detail or precision needed within the macroblock.

In more advanced codecs, the values available to the block are able to be adjusted at the block level, meaning areas with lesser detail are given a higher amount of quantization, and areas with more detail are assigned a lower amount of quantization. This balancing matrix provides additional values to be allocated when needed in order to keep the file size low, and the perceived quality loss to a minimum.

6.2.3.2 Chroma Subsampling

Within a macroblock, each pixel has a specific brightness (called *luminance*, usually signaled as *Y*) and color information (called *chrominance*, usually signaled as *Cb* and *Cr*). If the luminance information is isolated without the chroma information, the resulting image will show each pixel in a shade of gray. Chroma subsampling involves the reduction of the color information for neighboring sets of pixels to reduce the overall storage size and bit rate of a video file. Chroma subsampling is used in multiple image compression codecs. How much compression happens is often expressed as a ratio that define a pixel set, such as 4:4:4, 4:2:2, or 4:2:0, where the first value describes the number of *luminance* (*Y*) values in a sample, and the second and third values describe the number of *chrominance* (*Cb and Cr*) values that will be used to describe the neighboring pixels in the set.

The process of chroma subsampling involves a progressive reduction of color information within the video data. As the level of subsampling increases, the loss of color data also increases, resulting in the reduction of the image quality. Identifying the subsampling utilized may be useful to the examiner to understand the limitations of the video such as how accurately color is captured or represented. The chroma subsampling utilized can be identified within the metadata attributes of a digital video file.

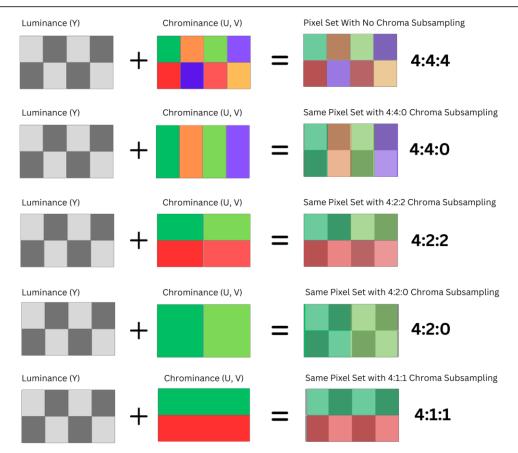


Figure 5. Theoretical illustration of the color information loss that is the result of chroma subsampling.

Common chroma subsampling ratios include the following:

- **4:4:4** is the highest quality; it effectively has no subsampling, because each pixel is represented and retains its luminance and chroma values.
- **4:2:2** samples two pixels from both the top and bottom rows of a pixel set, reducing the chroma information to 50 percent of the uncompressed source chroma.
- **4:2:0** takes two chroma samples from the top row of a pixel set and none from the bottom row, reducing the overall chroma information to approximately 25 percent of the uncompressed chroma.
- **4:1:1** (not shown above) takes one sample from the top row of a pixel set and one sample from the bottom row, reducing the overall chroma information by 25 percent of the uncompressed chroma.

6.2.4 Group of Pictures (GOP) Structure

A GOP structure is a term to describe both the order and number of a group of frames, each made up of an Intra Frame (I-frame), plus Predicted Frames (P-frames), and Bi-Directional Frames (B-frames), before the next I-frame. Visible data is generated by adding and moving data from the surrounding frames leading up to the next I-frame. When the next I-frame is displayed, the decoder is then instructed to start a new GOP, and previous data no longer needs to be retained. This process allows a file to save space by reducing the amount of redundant information.

- I-frames (also known as a reference or key frames) are frames that contain all newly encoded information. These frames generally have the most information in the GOP. These frames also contain the most accurate information, as no section will come from other frames. Every GOP contains one I-frame.
- P-frames are predictive frames. They contain information relating to changes from the
 previous I-frame, and newly encoded information only when the amount of change
 exceeds a threshold set by the encoder. As such, information similar to that in the I-frame
 may be ignored or moved to accommodate changes.
- B-frames are encoded based on interpolation from the nearest I- and/or P-frames. Again, these frames may contain newly encoded information. Typically, though, this is less new data than I-frames or P-frames, because both an I-frame and/or P-frame can be used to adjust information before and/or after B-frames.

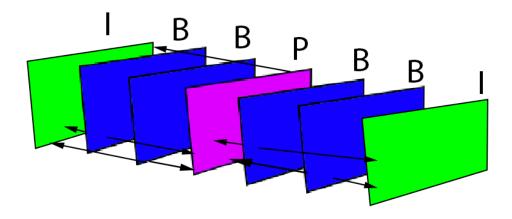


Figure 6. Illustration of the relationship between I-frames, P-frames, and B-frames.

• GOP Length is a measure of the number of predicted frames (P- or B-) that exist in a video stream between I-frames. Longer GOP lengths result in more efficient video

- encoding but do not capture quick transitions as effectively and may cause errors in the video. Maximum GOP length is dependent upon playback specifications.
- GOP Pattern is the arrangement of P- and B-frames within a GOP. These are typically expressed as IBBP or IP. The pattern after the I-frame describes the separation between P-frames and is not a full descriptor of the GOP. For example, an IP pattern defines a GOP with no B-frames, and IBBP shows that there are two B-frames between each P-frame. Smaller GOP patterns with shorter GOP lengths are more efficient for use with a video that includes rapid transitions, although they do not offer a high compression ratio.

7. Conclusion

With a comprehensive understanding of digital video file components and structure, administrators will be better equipped to make informed procurement decisions, and practitioners can ensure devices and recording equipment are deployed in the most efficient and effective manner. Careful considerations of the container, codec, frame rate, resolution, and compression can assist in defining project requirements and properly configuring systems for their intended use.

It is recommended that users of this document test and evaluate video systems for technical configuration and digital video output files to make informed decisions on optimal operational use.

8. Additional Resources

- Federal Agencies Digitization Guidelines Initiative (FADGI) Audio-Visual Working Group. "Creating and Archiving Born Digital Video." *Federal Agencies Digital Guidelines Initiative*, 2 Dec. 2014. http://www.digitizationguidelines.gov/guidelines/video bornDigital.html.
- Lacinak, Chris. "A Primer on Codecs for Moving Image and Sound Archives & 10
 Recommendations for Codec Selection and Management." *AudioVisual Preservation Solutions, Inc.*, 8 Apr. 2010, https://www.weareavp.com/wp-content/uploads/2017/07/AVPS_Codec_Primer.pdf.
- Memoriav, Association for the Preservation of the Audiovisual Heritage of Switzerland.
 "Digital Archiving of Film and Video: Principles and Guidance." English Version 1.1.,
 Memoriav, Sept. 2017. http://memoriav.ch/recommendations-digital-archiving-film-video/.
- Poynton, Charles. "Chroma subsampling notation." *Charles Poyton, PhD*, 2003. http://www.poynton.com/PDFs/Chroma subsampling notation.pdf

9. References

- [1] Scientific Working Group on Digital Evidence. *SWGDE Digital Image Compression and File Formats Guidelines*. *SWGDE*, 23 June 2016, https://www.swgde.org/wp-content/uploads/2023/11/2016-06-23-SWGDE-Digital-Image-Compression-and-File-Formats-Guidelines.pdf.
- [2] Scientific Working Group on Digital Evidence. *SWGDE Digital & Multimedia Evidence Glossary. SWGDE*, 23 June 2016, https://www.swgde.org/wp-content/uploads/2023/11/2016-06-23-SWGDE-Digital-and-Multimedia-Evidence-Glossary_v3-0.pdf.
- [3] Library of Congress. "Sustainability of Digital Formats: Planning for Library of Congress Collections." *Library of Congress*, https://www.loc.gov/preservation/digital/formats/fdd/browse_list.shtml. Accessed June 2017.
- [4] Scientific Working Group on Digital Evidence. SWGDE Proposed Techniques for Advanced Data Recovery from Security Digital Video Recorders Containing H.264 Data. SWGDE, 23 June 2016, https://www.swgde.org/wp-content/uploads/2023/11/2016-06-23-SWGDE-Proposed-Techniques-for-Advanced-Data-Recovery-from-Security-DVRs_v1-2.pdf.
- [5] Richardson, Iain. "Video Compression Codecs: A Survival Guide." *International Association of Sound and Audiovisual Archives (IASA) Journal*, vol. 47, 2017, pp. 8-21, https://journal.iasa-web.org/index.php/pubs/article/view/51/26.

10. History

Revision	Issue Date	History
1.0 DRAFT	1/12/2017	Initial draft created and SWGDE voted to release as a Draft for Public Comment.
1.0 DRAFT	2/21/2017	Formatted and technical edits performed for release as a Draft for Public Comment.
1.0 DRAFT	6/22/2017	Updated all sections of the document in response to comments received. SWGDE voted to approve as an Approved Document.
1.0	7/18/2017	Formatted and published as Approved version 1.0.
1.1	6/8/2022	Updated resources to stay current and clarified definitions.
1.2	1/11/2023	Clarified encoding language to remove limit to compression.
1.3	6/14/2023	Updated resolution to provide the more common 4K video resolution of 4096x2160. Various layout and grammatical errors addressed and corrected.
1.3	5/14/2024	Moved forward for SWGDE membership vote to release as a Final Approved Document.
1.3	8/5/2024	SGWDE voted to release as a Final Approved Document. Formatted for release as a Final Approved Document.