

SWGDE Best Practice for Frame Timing Analysis of Video Stored in ISO Base Media File Formats

Disclaimer and Conditions Regarding Use of SWGDE Documents:

SWGDE documents are developed by a consensus process that involves the best efforts of relevant subject matter experts, organizations, and input from other stakeholders to publish suggested best practices, practical guidance, technical positions, and educational information in the discipline of digital and multimedia forensics and related fields. No warranty or other representation as to SWGDE work product is made or intended.

As a condition to the use of this document (and the information contained herein) in any judicial, administrative, legislative, or other adjudicatory proceeding in the United States or elsewhere, the SWGDE requests notification by e-mail before or contemporaneous to the introduction of this document, or any portion thereof, as a marked exhibit offered for or moved into evidence in such proceeding. The notification should include: 1) The formal name of the proceeding, including docket number or similar identifier; 2) the name and location of the body conducting the hearing or proceeding; and 3) the name, mailing address (if available) and contact information of the party offering or moving the document into evidence. Subsequent to the use of this document in the proceeding please notify SWGDE as to the outcome of the matter. Notifications should be sent to secretary@swgde.org.

From time to time, SWGDE documents may be revised, updated, or sunsetted. Readers are advised to verify on the SWGDE website (www.swgde.org) they are utilizing the current version of this document. Prior versions of SWGDE documents are archived and available on the SWGDE website.

Redistribution Policy:

SWGDE grants permission for redistribution and use of all publicly posted documents created by SWGDE, provided that the following conditions are met:

- 1. Redistribution of documents or parts of documents must retain this SWGDE cover page containing the Disclaimer and Conditions of Use.
- 2. Neither the name of SWGDE nor the names of contributors may be used to endorse or promote products derived from its documents.
- 3. Any reference or quote from a SWGDE document must include the version number (or creation date) of the document and also indicate if the document is in a draft status.

Requests for Modification:

SWGDE encourages stakeholder participation in the preparation of documents. Suggestions for modifications are welcome and must be forwarded to the Secretary in writing at secretary@swgde.org. The following information is required as a part of any suggested modification:

- a) Submitter's name
- b) Affiliation (agency/organization)
- c) Address
- d) Telephone number and email address
- e) SWGDE Document title and version number

- f) Change from (note document section number)
- g) Change to (provide suggested text where appropriate; comments not including suggested text will not be considered)
- h) Basis for suggested modification

Intellectual Property:

Unauthorized use of the SWGDE logo or documents without written permission from SWGDE is a violation of our intellectual property rights.

Individuals may not misstate and/or over represent duties and responsibilities of SWGDE work. This includes claiming oneself as a contributing member without actively participating in SWGDE meetings; claiming oneself as an officer of SWGDE without serving as such; claiming sole authorship of a document; use the SWGDE logo on any material and/or curriculum vitae.

Any mention of specific products within SWGDE documents is for informational purposes only; it does not imply a recommendation or endorsement by SWGDE.

SWGDE Best Practice for Frame Timing Analysis of Video Stored in ISO Base Media File Formats

Table of Contents

1.	Purpose	2
2.	Scope	2
3.	Limitations	2
4.	Introduction	3
5.	Frame Timing in ISO Base Media File Formats	3
6.	Frame timing in H.264 video codings	4
7.	Timing Determination Using Multimedia File Metadata	5
7	.1 Presentation Frame Timing	5
7	.2 Decode Frame Timing	6
8.	Frame Timing Determination Using an External Timing Source	7
9.	Verification	9
10.	Example	10
11.	References	10
His	tory	12

SWGDE Best Practice for Frame Timing Analysis of Video Stored in ISO Base Media File Formats

1. Purpose

The purpose of this document is to provide forensic examiners recommendations for determining frame rate and frame interval timing as a part of forensic analysis of digital video.

2. Scope

This document addresses file formats encoded to the *ISO/IEC 14496-12 Information technology* — *Coding of audiovisual objects* — *Part 12: ISO base media file format* [1]. Additionally, this document specifically addresses videos encoded according to the H.264 specification [2]. The intended audience is forensic examiners with an advanced understanding of digital video file formats and encoding. This document specifically refers to the functionality of the metadata within files from recording devices, and not the reliability of the devices themselves.

This document is not intended to be used as a step-by-step guide for conducting a forensic examination or reaching a conclusion.

3. Limitations

Due to the wide variety of proprietary digital video recording devices and file formats, a singular approach to frame timing analysis cannot be applied to all files. Other multimedia file formats (e.g., .AVI, .MKV) and video coding standards (e.g., MPEG-1 Part 2, MPEG-2 Part 2) may require different approaches than those covered in this document.

Proprietary video files may store metadata with the video and audio data streams in a proprietary container and may not adhere to an encoding standard. Due to the unique nature of their file structure, proprietary video files may result in inaccurate frame rate reporting in many video playback/processing software programs. Additionally, this document is not intended for use on files that have been transcoded from their camera original file format by software outside the original recording device.

Note: It is recommended that examiners acquire both proprietary and open file formats from the source, if available. This allows for additional resources to be analyzed and may provide more information than a single source. When multiple file formats are available, the examiner should exercise caution in identifying the file format with the intended frame rate timing. It is also important to know the source of the video. Regardless of the acquired file format(s), frame timing analysis should not be conducted on transcoded or screen captured video files.

The concepts in this document may be used as part of investigations into determining object speed in recorded video. However, this document does not address the forensic use of photogrammetry, which is an integral part of any speed calculation. See *SWGDE Best Practices* for the Forensic Use of Photogrammetry for more information [3].

4. Introduction

The ISO/IEC 14496-12 Information technology — Coding of audiovisual objects — Part 12: ISO base media file format was originally derived from the QuickTime format specification and was standardized by ISO and is the foundation for MP4, 3GP, 3G2, and M4V multimedia file formats. Included in the standard is specific encoding language pertaining to the decoding and presentation timing of video frames; adherence to this encoding language should be evaluated by the examiner. Using this information, it is possible to calculate the specific time intervals between displayed frames.

Determining the frame timing within a video file has several applications and may be particularly helpful in determining the accuracy of an unknown variable during an event of interest. The importance of understanding frame timing has been shown in circumstances including calculating vehicle speed and evaluating the use of force where a misunderstanding of timing resulted in incorrect opinions from video files^{1,2}.

5. Frame Timing in ISO Base Media File Formats

Timing information for digital video in ISO Base Media files is stored in multiple locations throughout the file. Core concepts that are central for understanding the time elements discussed below can be found in *SWGDE Core Technical Concepts for Time-Based Analysis of Digital Video Files* [4]. The following is a hierarchical example of the common locations (i.e., structures) within an ISO Base Media file where timing information is stored³:

```
-mvhd
-- timescale
-- duration
-- rate
--tkhd
-- duration
---mdhd
-- timescale
-- duration
---stbl
```

¹ State of New Hampshire v. Witty, November 25, 2015, New Hampshire Superior Court, Southern District, Docket No. 226-2014 CR-00568

² Leyritz v. State, 93 So. 3d 1156, 2012 Fla. App. LEXIS 12526, 37 Fla. L. Weekly D 1835, 2012 WL 3101493

³ See *ISO/IEC 14496-12 Information technology — Coding of audiovisual objects — Part 12: ISO base media file format* for more detailed information on the structural components of these file formats.


```
----stts (time to sample)
----ctts (composition time to sample)
```

- The Movie Header Box (mvhd), defines overall information which is media-independent, and relevant to the entire multimedia presentation. Within this box, there are three time-related data elements.
 - **Timescale** specifies the timescale for the entire presentation; this is the number of time units that pass in one second. For example, a time coordinate system that measures time in sixtieths (1/60) of a second has a time scale of 60.
 - o **Duration** declares the length of the presentation in the timescale of this myhd box. This property is derived from the presentation's tracks; the value of this field corresponds to the duration of the longest track in the presentation.
 - **Rate** indicates the preferred rate to play the presentation (e.g., 1 is the equivalent of normal forward playback).
- The Track Header Box (tkhd) specifies the characteristics of a single track. The value of "duration" in this box indicates the duration of this track (in the timescale indicated in the mvhd). In general, the duration is the sum of the sample durations, converted into the timescale in the mvhd box.
- The Media Header Box (mdhd) declares overall information that is media-independent, and relevant to the characteristics of the media in a track. This is media specific, which may differ from the timescale of the overall multimedia file. The value "duration" declares the duration of this media (in the scale of the timescale of this mdhd box).
- The Sample Table Box (stbl) contains all the time and data indexing of the media samples (e.g., frames, in the case of video) in a track. Time to sample boxes contain the composition times (CT) and decoding times (DT) of samples, of which there are two types.
- The Time To Sample (stts) box gives durations for all samples, expressed in the timescale of the mdhd box.
- The Composition Time to Sample table (ctts) provides the offset between decoding time and composition time, in the case that they differ.

6. Frame timing in H.264 video codings

When encapsulated within ISO Base Media Files, H.264 video is packaged according to a specification commonly known as "AVCC," which is the name of the box within the ISO Base Media File that stores supplemental metadata required to re-present H.264 coded video samples. This box stores sequence parameter set (SPS) and picture parameter set (PPS) data that H.264 coding uses to establish the characteristics of the coded video samples. Within the SPS data,

timing information can be present, but it is optional. When it is present, it can define the timescale of the media samples and whether or not there is a constant frame rate.⁴

When H.264 is found within an ISO Base Media file, the combination of video sample timing information and multimedia file timing information must be evaluated carefully to calculate the duration and timecode for each video frame. For example, MP4 files store frame-by-frame timing data in sample tables, and use header boxes to store overall frame rate and time bases. These are all used to generate the calculations needed for playback devices to represent the frames of the embedded video samples as they were intended to be. The ability to determine frame timing is dependent on the ability to decode the container information. While many software programs and tools allow for the decoding and playback of video codings, they may not fully decode multimedia file metadata in the same manner or in a transparent way for the examiner to see.

For additional information on file formats and applications used for frame timing see *SWGDE Technical Overview of Digital Video Files* and *SWGDE Technical Notes on FFmpeg* [5,6].

7. Timing Determination Using Multimedia File Metadata

Utilizing the open-source application *FFmpeg* or other software tools, metadata from ISO Base Media File formats may be decoded to identify specific times at which individual frames are to be displayed. This timing information may account for skipped or dropped frames, variable frame rates, and potential encoding errors. The specific timecode information for each frame can be determined using a *ffprobe* Frame Information Report.

The Frame Information Report is generated within ffprobe utilizing the following command:

ffprobe -show_frames -print_format xml input.mp4 > output.xml

The report returns time and displays information from the video file as shown in Appendix A.

Consideration should be given to cases where proprietary systems are offering exports in non-proprietary formats, e.g., ISO base media file format. In these circumstances, it is also possible that the software developers who write custom code to create these ISO base media file format wrappers may create inaccurate calculations as they insert data into the internal ISO base media file format structures. Manual decoding of the file in a hex editor or the use of an external timing source as discussed in Section 8 may assist in this evaluation.

7.1 Presentation Frame Timing

When determining frame timing, timecode for each frame is reported in the packet presentation time (pkt_pts_time) column, decoded as a calculation of pkt_pts / the timescale of the media. The packet presentation time, displayed in seconds, is the exact time that a particular frame is to be displayed. It should be noted that the initial start point of timecode within a video stream may

_

⁴ See International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T) Recommendation H.264, *Infrastructure of audiovisual services*, *Annex E*, for further information about this Video Usability Information (VUI).

not start at 0 seconds, rather it may be an arbitrary number. By looking at the difference between pkt_pts_time values for sequential frames, examiners can determine the reported elapsed time between frames. This is different from frame rate as it identifies the time between each frame rather than the amount of frames displayed in one second.⁵

The distinction between elapsed time between frames and frame rate is an important one. The delta of packet presentation times identifies the elapsed time between two specific frames, whereas frame rate identifies a total number of frames displayed in a second. Frame rate does not address the specific time between frames within that second.

7.2 Decode Frame Timing

Packet decode time (packet_decode_time) is also reported in the Frame Information Report. This is the specific time at which a frame is to be decoded by the playback software. It is important to note that the aforementioned ffprobe command is deriving information from the video file as stored in the frames data, prior to a file being actively decoded. For that reason, the packet decode timestamp (pkt_dts_time) and the packet presentation timestamp (pkt_pts_time) may be the same value.

Understanding packet presentation and packet decode times is an important distinction in video files that contain bi-directional frames (b-frames). However, the display order is not determined until after it is decoded (see *SWGDE Technical Overview of Digital Video Files*, Section 6.4.2) [5]. When b-frames are noted in the video file, an *ffmpeg* command to decode the file and determine the appropriate display order and timing of the b-frames first is more appropriate.

Packet decode time and packet presentation time can be generated after decoding a file utilizing the following command, which will generate a log file in the same directory as the input file and will include timing information:

ffmpeg -i input.dvr -dump -map 0:v -f null - -report -loglevel quiet

_

⁵ Also reported in the Frame Information Report is packet duration time (pkt_duration_time). Packet duration time displays the total time that an individual frame is to be displayed (the value is expressed in the timescale of the media). Examiners should evaluate this time against packet presentation time before use in an examination. However, as these values are given at different times in the frame processing, differences between packet presentation times of sequential frames and packet duration time may occur and should be examined and documented.

Note that in the example below the packet decode time may be prior to the presentation time due to the b-frames' reliance on frames presented before and after them. Also note that the values for duration, pts, and dts are expressed in seconds.

```
stream #0:
    keyframe=0
    duration=0.033
    dts=0.167    pts=0.167
    size=17424
stream #0:
    keyframe=0
    duration=0.033
    dts=0.200    pts=0.300
    size=36907
stream #0:
    keyframe=0
    duration=0.033
    dts=0.234    pts=0.234
    size=11742
```

A combination of the ffprobe and *ffmpeg* analysis of individual frame information can be used to verify frame timing outputs. If pts and dts values are found to be the same for each frame, the ffprobe report (described earlier in this section) may be preferred as it is easier to view the information in spreadsheet form as opposed to the created text log file.

8. Frame Timing Determination Using an External Timing Source

Regardless of the ability to decode ISO Base Media File metadata, a known timing source can be used to evaluate frame timing. While deriving frame time from file metadata may have a higher degree of precision⁶ than other methods, there are occurrences when that is not an option (e.g., inability to decode proprietary container information, transcoding within the recording device, or a stream copy that removes pertinent metadata). In the event of discrepancies between the documented frame data and an external source, additional testing may be necessary.

Consideration should be given to confirm timing information given to non-camera original files

_

⁶ In this context, precision is the quality of the being exact (e.g., the smallest unit of measure of time that can be discerned). It should not be conflated with accuracy, which is how close the value is to the correct value (ground truth).

(i.e., files transcoded to .MP4 by a recording device), either through the use of an external timing source and/or manual decoding of a file in a hex editor.

Determining frame timing information for a multimedia file using an external timing source can be accomplished through recording a test video of a timing device and using the newly generated video frames to determine frame timing. When recording a test video, conditions of the recording device's stressors (e.g., amount of motion, number of cameras connected) for that test video should be similar, or worse, than the evidence video. Those stressors may affect the ability of the recording device to process and encode data accurately and should be evaluated in worst case conditions. For example, if the evidence video has 16 cameras recording a store with shoppers walking around, the test video should have all 16 cameras recording with equal or greater motion in each camera.

There are a number of methods that can be used to display time for a test recording. It is important to use a timer where the examiner can accurately discern the correct time with adequate precision, minimally displaying .01 of a second. Considerations should be made to properly resolve any displayed timer with minimal motion blur. Techniques to accomplish this can include placing the timer as close as possible to the camera and using a larger sized display (e.g., tablet or computer displayed timer).

Using the known timing information generated by an external timing device, a margin of error can be calculated for frame timing. By using the external time display, the delta between subsequent frames can be calculated. Those intervals between frames can also be plotted and a minimum and maximum deviation calculated. This information can then be used to determine minimum and maximum timing between frames. It is important that the test video be of sufficient length and that calculations be made at various points within the file to ensure accuracy.

An LED light timing device may assist in determining time in individual frames. The use of an LED timer allows for precise determination of smaller increments of time through the use of an individual LED opposed to a digital display. If an LED box is employed to determine the time, the box should be oriented in both a vertical and horizontal fashion to account for any variance in cameras using a rolling shutter.

Prior to use, any timer should be calibrated according to methods recommended by NIST [7].

The image above shows an LED light timer as compared to a cell phone and an internet-based stopwatch. Multiple still images are captured and the time differences for each device in those images is calculated. The time differences between each frame should be consistent, as shown below:

Image	LED Timer	LED Difference	Cell Phone	Cell Difference	Internet	Internet Difference
1	3.24		33.18		27.83	
2	5.14	1.9	35.08	1.9	29.73	1.9
3	7.76	2.62	37.7	2.62	32.35	2.62
4	9.77	2.01	39.71	2.01	34.36	2.01
5	12.82	3.05	42.76	3.05	37.41	3.05

9. Verification

Any findings should be verified as there are numerous variables involving recording manufacturers, codecs, and containers. This can be accomplished by verifying frame timing in the ffprobe frame information report by manual subtraction of packet presentation times, comparing file metadata with a timing source, or comparing the overall frame rate with specific

frame timings to look at any potential variances. When comparing metadata to a visual timing source, multiple samples from a wide cross section of the video file with a sufficient number of frames should be analyzed. This should help ensure an accurate analysis of LED displayed time and metadata time.

10. Example

An examiner is provided with an MP4 video file that is native to the DVR from which it was acquired. The examiner is asked to determine the elapsed time between a vehicle's brake lights activating and its impact with another vehicle. The examiner generates sequential still images from the file and identifies the frame where the brake lights are activated as well as the frame where the vehicles impact. A determination is then made that no b-frames are present in the video file. The examiner then generates a frame information report with ffprobe to determine the packet presentation time of those frames. Using the packet presentation times, frame timing was calculated for the examination. Prior to reporting the findings, the examiner returns to the scene with a LED light timer and records an exemplar video. A frame information report is then generated of the exemplar video file and the frame timing derived from the metadata is confirmed with the visual display of the light box.

11. References

- [1] Information technology Coding of audiovisual objects Part 12: ISO base media file format, ISO/IEC 14496:2012.
- [2] Infrastructure of audiovisual services Coding of moving video, ITU-T Recommendation H.264.
- [3] Scientific Working Group on Digital Evidence, "SWGDE Best Practices for the Forensic Use of Photogrammetry," 2015. [Online]. https://www.swgde.org/documents
- [4] Scientific Working Group on Digital Evidence, "SWGDE Core Technical Concepts for Time-Based Analysis of Digital Video Files," 2019. [Online]. https://www.swgde.org/documents/draftsForPublicComment
- [5] Scientific Working Group on Digital Evidence, "SWGDE Technical Overview of Digital Video Files," 2017. [Online]. https://www.swgde.org/documents
- [6] Scientific Working Group on Digital Evidence, "SWGDE Technical Notes on FFmpeg," 2018. [Online]. https://www.swgde.org/documents
- [7] J. Gust, R. Graham, and M. Lombardi, "Stopwatch and Timer Calibrations," *NIST Special Publication 960-12*, 2009. [Online]. https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=50659

Appendix A – Frame Information Report

		code	d			sample														nb_s	
	stream	pictu	re_ key	_f pict_t	t repea	t _aspec							best_effort_ti	best_effort_ti		pkt_duration_t		channel	channel	ampl	sampl
media_type	_index	numb	er ran	ne ype	_pict	t_ratio	height	width pix_fmt	pkt_dts	pkt_dts_time_pkt_p	ts	pkt_pts_time	mestamp	mestamp_time	pkt_duration	ime	pkt_pos	pkt_size layout	s	es	_fmt
/ideo	0		0	1 I		0 1:1	1080	1920 yuv420p	0	0	0	0	(0	100	0.016683	58502	149863			
audio	1			1					0	0	0	0		0	102	4 0.021333	273623	9 stereo	2	1024	1 fltp
video	0		2	0 B		0 1:1	1080	1920 yuv420p	1001	0.016683	1001	0.016683	100:	0.016683	100	0.016683	263747	9876			
audio	1			1					1024	0.021333	1024	0.021333	102	0.021333	102	4 0.021333	329444	9 stereo	2	1024	1 fltp
video	0		1	0 P		0 1:1	1080	1920 yuv420p	2002	0.033367	2002	0.033367	200	0.033367	100	0.016683	208391	55356			
audio	1			1					2048	0.042667	2048	0.042667	204	0.042667	102	4 0.021333	341478	308 stereo	2	1024	1 fltp
video	0		4	0 B		0 1:1	1080	1920 yuv420p	3003	0.05005	3003	0.05005	300	0.05005	100	0.016683	329453	12025			
audio	1			1					3072	0.064	3072	0.064	307	0.064	102	4 0.021333	400513	405 stereo	2	1024	1 fltp
video	0		3	0 P		0 1:1	1080	1920 yuv420p	4004	0.066733	4004	0.066733	4004	0.066733	100	0.016683	273632	55812			
video	0		7	0 B		0 1:1	1080	1920 yuv420p	5005	0.083417	5005	0.083417	500	0.083417	100	0.016683	414029	12258			
audio	1			1					4096	0.085333	4096	0.085333	409	0.085333	102	4 0.021333	426287	377 stereo	2	1024	1 fltp
video	0		6	0 B		0 1:1	1080	1920 yuv420p	6006	0.1001	6006	0.1001	600	0.1001	100	0.016683	400918	13111			
audio	1			1					5120	0.106667	5120	0.106667	5120	0.106667	102	4 0.021333	452473	376 stereo	2	1024	4 fltp
video	0		5	0 P		0 1:1	1080	1920 yuv420p	7007	0.116783	7007	0.116783	700	0.116783	100	0.016683	341786	58727			
audio	1			1					6144	0.128	6144	0.128	614	0.128	102	4 0.021333	460643	367 stereo	2	1024	1 fltp
video	0		10	0 B		0 1:1	1080	1920 yuv420p	8008	0.133467	8008	0.133467	8008	0.133467	100	0.016683	461010	8672			
audio	1			1					7168	0.149333	7168	0.149333	716	0.149333	102	4 0.021333	469682	422 stereo	2	1024	4 fltp
video	0		9	0 B		0 1:1	1080	1920 yuv420p	9009	0.15015	9009	0.15015	9009	0.15015	100	0.016683	452849	7794			
video	0		8	0 P		0 1:1	1080	1920 yuv420p	10010	0.166833	10010	0.166833	10010	0.166833	100	0.016683	426664	25809			
audio	1			1					8192	0.170667	8192	0.170667	819	0.170667	102	4 0.021333	488349	534 stereo	2	1024	1 fltp
video	0		13	0 B		0 1:1	1080	1920 yuv420p	11011	0.183517	11011	0.183517	1101:	0.183517	100	0.016683	488883	5294			
audio	1			1					9216	0.192	9216	0.192	921	0.192	102	4 0.021333	494177	489 stereo	2	1024	1 fltp
video	0		12	0 B		0 1:1	1080	1920 yuv420p	12012	0.2002	12012	0.2002	1201	0.2002	100	0.016683	484102	4247			
audio	1			1					10240	0.213333	10240	0.213333	1024	0.213333	102	4 0.021333	515780	468 stereo	2	1024	1 fltp
video	0		11	0 P		0 1:1	1080	1920 yuv420p	13013	0.216883	13013	0.216883	1301	0.216883	100	1 0.016683	470104	13998			
rideo	0		16	0 B		0 1:1	1080	1920 yuv420p	14014	0.233567	14014	0.233567	14014	0.233567	100	1 0.016683	519817	3372			
udio	1			1					11264	0.234667	11264	0.234667	1126	0.234667	102	4 0.021333	523189	445 stereo	2	1024	1 fltp
video	0		15	0 B		0 1:1	1080	1920 yuv420p	15015	0.25025	15015	0.25025	1501		100	1 0.016683	516248				
audio	1			1					12288	0.256	12288	0.256				4 0.021333	548217	432 stereo	2	1024	4 fltp
video	0		14	0 P		0 1:1	1080	1920 yuv420p	16016	0.266933	16016	0.266933	1601		100	1 0.016683	494666				
audio	1			1				,,	13312	0.277333	13312	0.277333	1331				552638		2	1024	4 fltp

History

Revision	Issue Date	Section	History
1.0 DRAFT	2019-06-06	All	Initial draft created and voted by SWGDE for release as a Draft for Public Comment.
1.0 DRAFT	2019-07-16	All	Formatting and technical edit performed for release as a Draft for Public Comment.
1.0	2019-09-19		No edits following public comment period. SWGDE voted to publish as an Approved document.
1.0	2019-09-29		Formatted for release as Approved version 1.0.
1.1	2021-09-16	1,2,3,4,7,8	Public comments received. Document edited in response to those comments and noted in separate comments document. Clarified scope and limitations. Edits based in part on feedback from the public.
1.1	2022-06-09		No comments received, released as a final publication